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High-order triangle-based discontinuous Galerkin (DG) methods for hy-
perbolic equations on a rotating sphere are presented. The DG method can
be characterized as the fusion of finite elements with finite volumes. This
DG formulation uses high-order Lagrange polynomials on the triangle us-
ing nodal sets up to 15th order. The finite element-type area integrals are
evaluated using order 2N Gauss cubature rules. This leads to a full mass
matrix which, unlike for continuous Galerkin (CG) methods such as the
spectral element (SE) method presented in [16], is small, local and efficient
to invert. Two types of finite volume-type flux integrals are studied: a set
based on Gauss-Lobatto quadrature points (order 2N — 1) and a set based
on Gauss quadrature points (order 2/N). Furthermore, we explore conser-
vation and advection forms as well as strong and weak forms. Seven test
cases are used to compare the different methods including some with scale
contractions and shock waves. All three strong forms performed extremely
well with the strong conservation form with 2V integration being the most
accurate of the four DG methods studied. The strong advection form with
2N integration performed extremely well even for flows with shock waves.
The strong conservation form with 2V —1 integration yielded results almost
as good as those with 2/N while being less expensive. All the DG meth-
ods performed better than the SE method for almost all the test cases,
especially for those with strong discontinuities. Finally, the DG methods
required less computing time than the SE method due to the local nature
of the mass matrix.

Key Words: Dubiner, electrostatics, Fekete, finite element, finite volume, Jacobi, Koorn-
winder, Lagrange, penalty method, polynomial, Proriol, Riemann solver, Rusanov flux, shal-
low water equations, spherical geometry.



2 F.X. GIRALDO

1. INTRODUCTION

On spherical domains, the most natural solution strategy is to use spherical
harmonics (spectral transform methods) on a Gaussian grid where the longitude
and latitude are the spherical coordinates. However, choosing spherical harmonics
eliminates any possibility of exploiting adaptive solution strategies. Furthermore,
for solving relevant problems the numerical model must be run in a distributed-
memory mode (such as with the Message-Passing Interface). It is well known that
the cost of spherical harmonics is O(N},) where Nj,; denotes the number of grid
points in the latitudinal direction (south to north pole).

On the other hand, local methods (e.g., finite differences, elements, and volumes)
cost on the order of O(N?) where N, denotes the number of total grid points. If
either adaptivity or unstructured grids are to be used then this now only leaves finite
elements (FE) and finite volumes (FV) as the only two viable options. Typically,
a choice has had to be made between high order accuracy and local conservation.

If high order accuracy (beyond 2nd order) is selected as the main criterion then
the FE method must be the method selected. High order FE methods are typically
referred to as spectral elements (SE) and we shall use these two terms interchange-
ably throughout this manuscript. FE/SE methods have shown to be quite capable
of producing very accurate solutions for flows on rotating spheres (see [16]) pro-
vided that the solutions are smooth. However, if the solutions are non-smooth then
FE/SE methods do not perform as well. We showed this in [13] in the context of
unstructured quadrilateral elements and we show this in Sec. 5 for unstructured
triangular elements.

However, if local conservation is the main criterion then FV methods must be
chosen. FV methods have been shown to be quite effective in handling discontinuous
flows on rotating spheres (see [23]). However, FV methods are at most second order
accurate on unstructured triangular grids (see [10]); higher order reconstructions are
only readily available for Cartesian (structured) grids and only using quadrilaterals.

Thus if both high order accuracy and local conservation on unstructured trian-
gular grids are sought then the natural choice is the discontinuous Galerkin (DG)
method. In essence, the DG method extracts the best features of FE and FV
methods and fuses them into a powerful method capable of delivering high order
accuracy in conjunction with local conservation. In [13] we introduced the first
DG formulation for flows on a rotating sphere using much of the same machinery
originally developed for SE methods (see [12]); the main difference being that we
replaced the C° continuity condition of SE methods with a discontinuity at the
element interfaces resolved via jump conditions in a similar vein to that of penalty
methods (see [4]). Because the DG method shares much in common with FV
methods then much of the same machinery developed for FV methods such as total
variation diminishing (TVD) schemes and nonlinear flux limiters can be applied
to DG methods which then renders the solutions not only high-order accurate but
also monotonicity preserving as well.

In addition to offering local conservation, high order accuracy, monotonicity,
and adaptivity, the DG method also offers efficiency and natural parallelization
especially for unstructured triangular grids. To clarify this point, in Fig. 1 we show
the discrete stencil required by both the DG and SE methods. The DG stencil
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is shown by the solid triangles (3 triangles) and the SE stencil by both the solid
and dashed triangles (13 triangles). Note that no matter how unstructured the
grid becomes, the DG triangle will always have only 3 edge neighbors (E1, E2,
and E3) to communicate with while the communication stencil of the SE triangle
is much larger because the C° continuity condition is based on vertex neighbors.
With grid adaptivity, the number of vertex neighbors for the SE triangle may change
drastically from one grid generation to the next whereas the DG triangle will always
have only three edge neighbors no matter how distorted the grid becomes.
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E1l

FIG. 1. The discrete stencil of the triangle, T, for the DG method (solid triangles) and the
SE method (solid and dashed triangles).

It should be mentioned that recently robust high-order (3rd order) FV using
weighted essentially non-oscillatory (WENO) reconstructions have been developed
(see [8], [18], [24]) for unstructured triangular grids. There exists a 4th order
reconstruction (see [18]) but it is not as geometrically flexible as its lower order
cousins. WENO FV methods show great promise and higher order reconstructions
are underway but the complexity in constructing the weighted differencing stencils
may prove to be too daunting a task. The advantage that DG methods have over
WENO FV and all other methods is that DG methods can be used on highly
unstructured triangulations and to arbitrarily high order. Nonetheless, the DG
method is not without its weakness; current research in DG methods focuses on
the construction of robust TVD limiters for shock wave phenomena which we reserve
for future work.

The remainder of the paper is organized as follows. Section 2 describes the
governing equations of motion used to test our numerical method. In Sec. 3 we
describe the discretization of the governing equations. This includes the spatial
discretization by the triangle-based DG method and the time-integrator. In Sec.
4 we describe one of the many possible triangulations on a sphere. Finally, in
Sec. 5 we present convergence rates for the four triangle-based DG methods and
compare them with the SE method. This then leads to some conclusions about the
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performance of the various DG methods studied and a discussion on the direction
of future work.

2. CONTINUOUS EQUATIONS

The discontinuous Galerkin method we propose in this work is applicable to
any nonlinear hyperbolic partial differential equation on a sphere. Thus at this
point the only condition on the continuous equations is that the flow be invis-
cid - that is, the method is equally applicable to the Euler, shallow water, and
magneto-hydrodynamics shallow water equations. For the purposes of describing
the algorithm we shall restrict our attention to the shallow water equations; in
future work we shall address other equation sets.

The shallow water equations are a system of first order nonlinear hyperbolic
equations which govern the motion of an inviscid incompressible fluid in a shallow
depth. The predominant feature of this type of fluid is that the characteristic length
of the fluid is far greater than its depth which is analogous to the motion of air
in the atmosphere and water in the oceans. For this reason these equations are
typically used as a first step toward the construction of either NWP, climate, or
ocean models.

The shallow water equations on a sphere in Cartesian conservation form are

oq

a"'V'F(Q):S(CI) (1)

where ¢ = (¢, pu”)” are the conservation variables,
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is the flux tensor and

0
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is the source function where the nabla operator is defined as V = (8,,9,,0,)T, ®
denotes the tensor product operator, ¢ is the geopotential height (¢ = gh where
g is the gravitational constant and h is the vertical height of the fluid), ¢° is the
surface topography (e.g., mountains), u = (u,v,w)? is the Cartesian wind velocity
vector, f = 2:—22 is the Coriolis parameter and (w,a) represent the rotation of the
earth and its radius, respectively. The term Z3 is a rank-3 identity matrix, and
the term px, where £ = (z,y,2)7 is the position vector of the grid points, is a
fictitious force introduced to constrain the fluid particles to remain on the surface
of the sphere. Switching from spherical (2D) to Cartesian (3D) coordinates allows
the fluid particles an additional degree of freedom; the Lagrange multiplier, u, is
introduced in order to prevent particles from flying off the sphere. The reason for
using the Cartesian form of the equations is that the pole singularity associated
with spherical coordinates is avoided and because this form, in conjunction with
the mapping described in Sec. 3.1.1, allows for any curved surface to be discretized
by this approach.
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Alternatively, Eq. (1) can be recast in the advection form

8CIA A A
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where g4 = (¢,u”)7 is the solution vector, p = (0, ¢, $, ¢)T is the pressure vector,

and
_ oV -u
S(qA)__<f(wxu)+V¢s+,ua:> (5)

is the source function. The reason for considering the advection form of the equa-
tions is because we would like to be able to use semi-Lagrangian time-integrators
(see [14]) in future work.

3. DISCRETIZATION

In this section we describe the discretization of the shallow water equations.
In Sec. 3.1, we describe the spatial discretization by the discontinuous Galerkin
method including: the choice of basis functions, integration, and construction of
the semi-discrete problem using various DG formulations. In Sec. 3.2 we describe
the explicit time-integrator.

3.1. Triangle-based Discontinuous Galerkin Method
3.1.1. Basis Functions

To define the discrete local operators we begin by decomposing the spherical
domain 2 into N, conforming non-overlapping triangular elements 2, such that

Ne
Q= Q.
e=1

It should be mentioned, however, that the condition on grid conformity is not
required by the DG method; we only impose this condition for ease of exposition.

To perform differentiation and integration operations, we introduce the non-
singular mapping @ = ¥(£) which defines a transformation from the physical
Cartesian coordinate system & = (z,y, z)T to the local reference coordinate system
& = (&,1,¢)7 such that (£,n) lies on the spherical surface tiled by the triangular
elements defined by Q. = {(§,7,¢), -1 <&n <1, {+n <0, (=1}

Let us now represent the local element-wise solution g by an Nth order polyno-
mial in &€ as

My
an(§) = ZLi(ﬁ)QN(ii) (6)

where £; represents My = (N +1)(N +2) grid points and L;(£) are the associated
multivariate Lagrange polynomials. For the grid points &; we choose the nodal set
derived from the electrostatics principle [17] for N < 11 and the Fekete points
[26] for 11 < N < 15. These sets were selected because they yield the lowest
Lebesgue constants currently found in the literature. In [16] these nodal sets were
shown to exhibit exponential convergence for the shallow water equations on the
sphere using a spectral element formulation. The details on the construction of the
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Lagrange polynomial basis functions can be found in [16] where cardinal functions
based on the Proriol-Koornwinder-Dubiner (PKD) polynomials [22, 20, 5] are used.
Alternatively, one could also choose to use the PKD polynomials themselves as the
basis functions as is done in [7] and [6] which then yields a modal representation
(spectral or amplitude-frequency space) of the solution variables instead of the
nodal representation (physical space) that we propose. Both the modal and nodal
representations should yield the same accuracy; however, the difference between
these two forms may be in their relative efficiencies (i.e., computational cost). In
the future, comparison studies between these two forms should be performed in
order to quantify their performance but for now we shall proceed only with the
nodal representation.

3.1.2. Integration

In order to complete the discussion of the local element-wise operations required
to construct discrete spatial operators we must lastly describe the integration pro-
cedure required by the weak formulation of all Galerkin methods. For any two
functions f and g the integration Z proceeds as follows

Mq
Tlf.g)= | f(@)g(@de = 3w 1) | (€ 9(€)

where Mg is a function of () which represents the order of the cubature approxi-
mation. For w; and &; we use the high-order cubature rules for the triangle given
in [25, 2, 21, 3]. We are now in a position to construct the semi-discrete problem.

3.1.3. Tangent and Normal Vectors of the Element Edges

Below it will become evident that in order to construct a discontinuous Galerkin
discretization requires knowing a bit about the element geometry. In continuous
Galerkin methods such as finite and spectral element methods the only required
information is the basis functions, metric terms, and cubature rules. The DG
method requires all of this finite element-type information plus some finite volume-
type information regarding the element edges and the element neighbors sharing
these edges. However, the good news for the DG method is that regardless of the
order of the basis function, N, each element only has three edge neighbors. This is
the process by which a DG element shares its local information with its neighbors.
Figure 2 shows a schematic of a master element along with its three normal vectors.
Note that the tangent vectors for the three edges are given as follows:

o for edge 1 ¢t; = %_'?

__9x | ox
o for edge 2 t, = —5¢ + 5,

_ _ oz
oforedge3t3_—an

Now, let r = % be the radial vector oriented from the origin (the center of the
sphere) to the point z; on the master element given in Fig. 2 r points out of the
paper. Then the normal vectors are computed as follows n = £ x r which then must
be normalized to unity. Although the radial vector, r, and the tangent vector, ¢,
change along an edge its cross product, m, remains constant throughout; thus we
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FIG. 2. The normal vectors of the master triangle.

only need to store one normal vector per edge regardless of the number of cubature
points along that edge.

3.1.4. Conservation Form

Applying the discontinuous Galerkin discretization to the conservation form, Eq.
(1), and using Green’s theorem yields the classical DG form which we shall refer to
as the weak conservation form

0
/ (% —Fy-V - SN> Li(z)da = —/ Li(z) n - Fldze (7)
where f is the polynomial representation of any function f given by Eq. (6) and n
is the outward pointing normal vector of the element edge I'.. F'y is the Rusanov
numerical flux

Fy = % [Fn (a%) + Fn (a%) — 1M (g% — ak) ] (8)

where A = max (UL + /oL, UE + qu) with UL = yl+® . n being the normal
component of velocity with respect to the edge T'e, and the superscripts L and R
represent the left and right states of the element edge. The normal vector n is
defined as pointing outward from left to right. Numerous other numerical fluxes
are possible (such as those based on either exact or approximate Riemann solvers)
but we have chosen the Rusanov flux primarily due to its generality and simplicity.
In future work we shall explore different fluxes in connection with total variation
diminishing (TVD) schemes.
Integrating Eq. (7) by parts once more yields the strong conservation form

/QL,-(a;) (6(;1—?+V-FN—SN)dw:/ Li@) n- (Fx - Fi)dz  (9)

€
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which, although mathematically equivalent to the weak form, yields different nu-
merical solutions.

Remark. In [13] we referred to the strong, Eq. (9), and weak, Eq. (7), conser-
vation forms as the divergence and Green’s forms. In addition, we referred to the
Rusanov flux, Eq. (8), as the Lax-Friedrichs flux. These two fluxes are equivalent
if and only if the maximum wave speed, A, approaches the Courant number which
need not always be the case (e.g., see [27]).

3.1.5. Advection Form
Applying the discontinuous Galerkin discretization to the advection form, Eq.
(4), and using Green’s theorem yields the weak advection form

A
Qe

€

where

Ff = ( oNuN ) (11)

uy @un + dnIs

is the flux tensor corresponding to the advection form of the equations.
Integrating Eq. (10) by parts once more yields the strong advection form

oq'a X
/ Li(x) (% +uN-Vq§+VpN—Sj§‘,) dw:/ Li(w)n-(Fﬁ—Fﬁ’ )dw.
e (12)

€

Remark.  The weak form of the DG, Egs. (7) and (10), is easier to implement
numerically because this form does not require constructing derivatives of the flux
tensors, only the derivatives of the basis functions.

Remark. The strong form, Egs. (9) and (12), is conceptually more attractive,
and somewhat reminiscent of penalty methods, in that it amounts to satisfying the
original equations in a local element sense with neighboring elements communi-
cating only via the penalty/jump conditions represented by the flux terms on the
right-hand-side of the equations. This is evident by comparing Eqgs. (1) and (9),
and Egs. (4) and (12).

Remark.  Conventional wisdom discourages the use of the advection form for
finite volume methods. The reason given is that this form is not guaranteed to
converge to the correct solution when strong shocks are present. We study the DG
in strong advection form to see if for the limited number of cases we study we see
such behavior.

3.2. Time-Integrator
In almost all DG formulations, the time-integrator is usually chosen to be some
variant of Runge-Kutta (RK) methods. This family of time-integrators is selected
because these methods are stable for eigenvalues off the imaginary axis. However,
in many applications in geophysical fluid dynamics (GFD) semi-implicit methods
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based on second order leapfrog (LF2) have been the method of choice; however,
LF2 does not work very well for DG precisely because the DG eigenvalues are more
akin to parabolic equations rather than purely hyperbolic systems. Since the DG
method proposed in the present work is meant to appeal to researchers in both
computational fluid dynamics (CFD) and GFD we shall use an explicit version
of the second order backward difference formula (BDF2) originally proposed by
Karniadakis et al. (see [19]).
For the set of ordinary differential equations

Jq

the explicit BDF2 time-integrator yields:
4 1 4 2
q"" = 24" - 3q" + AR — SAtR™ (14)

which, like RK methods, is stable for eigenvalues off the imaginary axis and is
therefore as stable as RK but is a one-stage three-time-level method. We have
used this method quite successfully for semi-implicit hydrostatic primitive equation
models [15] and semi-Lagrangian shallow water models [14]. It turns out that the
explicit BDF2 and RK2 have similar stability regions; however, the fact that BDF2
only requires one evaluation of the discrete operators per time step means that it
is more efficient than RK2.

4. TRIANGULATION ON A SPHERE

The choice of which triangulation to use for the sphere is not obvious. Commonly,
grids are chosen which simplify the construction of the discrete operators. For
example, latitude-longitude grids are used with spectral transform methods because
these are the only grids that can be used with this method. The hexahedral grid
(i.e., the cubed-sphere) has been used with finite difference, finite volume, and
spectral element methods because each of the six faces of the cube map onto a
simple Cartesian geometry that allows for the simple and rapid construction of the
discrete operators. Picking one grid and constructing the discrete operators on a
specific grid geometry simplifies matters but it also dictates the algorithm thereby
losing any hope of using other types of grids and adaptive solution strategies.

In our case, the DG method is constructed in a very general way such that
the model reads in any grid geometry and then constructs the discrete operators
directly on the grid. This allows the use of any grid and offers the freedom to choose
the best possible grid for specific applications. For the purposes of validating the
triangle-based DG methods we shall use a disjointed set of triangles formed by
the subdivision of the triangular faces of an icosahedron; however, it should be
understood that any triangular grid can be used; other possible triangulations are
presented in [16].

To construct icosahedral grids we consider the initial icosahedron and subdivide
each of the initial triangles by a Lagrange polynomial of order ny. Prior to mapping
these elements onto the sphere it is convenient to map the triangles onto a gnomonic
space. The most unbiased mapping is obtained by mapping about the centroid of
the triangles.
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Let (A, 6.) be the centroid of the triangle we wish to map where \ represents
the zonal (east-west) and 6 the meridional (north-south) directions. The gnomonic
mapping is then given by

X = — . acosf@sin(A — ;) ’ (15)
sin 6. sin 6 + cos f, cos 8 cos(A — A;)
a[cos b, sin @ — sin ., cos f cos(A — \,.)]
sin 0, sin 6 + cos 8. cos 6 cos(A — \;)

Y =

where X € [—1,+1])? in the equi-distant gnomonic space G. To simplify matters a
bit, we first apply a rotation whereby Eq. (15) becomes

X = atan AR, Y =atanfgsec g ,

in the new coordinate system with the centroid (\.,6.) located at (0,0). The
rotation mapping is given as

cos @ sin(\ — A.)
sinf. sin @ + cos 6. cos cos(A — A.) |’

fr = arcsin[cosf,sinf — sin b, cosf cos(A — \.)].

Ar = arctan

This approach enables the construction of an icosahedral grid with the following
properties

N, = 10(n; N)* +2 , (16)
N, = 20(nr)* , (17)
where N, and N, denote the number of points and elements comprising the trian-

gular grid, and ny controls the number of triangular elements while N denotes the
order of the polynomial inside each element. Figure 3 provide examples of grids for
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FIG. 3. Icosahedral grid for ny =2 and a) N =4,b) N =8, and c) N = 12.

ny =2 and N = 4,8 and 12. All the grids illustrated are viewed from the North
Pole where the thick lines denote the elements and the thin lines are the high-order
grid points.

5. NUMERICAL EXPERIMENTS
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For the numerical experiments, we use the normalized Lo error norm

fQ d)exact 2dQ
oz, = \/ [ @ df

to judge the accuracy of the SE methods. To compute the Courant number the
elements are decomposed into their high-order (HO) grid points and these grid
points form a fine grid which we refer to as the HO cells. The velocities and grid
spacings are then defined at the centers of these cells. Using these definitions the
Courant number is then defined as

A e
Courant number = max (ist) Ve €[1, ..., N¢]

HO
where
C= U for caseslandb
T\ U+ +/¢ for cases2,3,4, and 6

where C' is the characteristic speed, U = v/u - u, and As = \/Az2 + Ay + Az2 is
the grid spacing. For all the results presented the Courant number is taken to be
< 0.2 which is the region of stability for BDF2 (see [15]).

Seven test cases are used to judge the performance of the triangle-based DG
methods. Cases 1, 2, and 3 correspond to the Williamson et al. standard test case
suite [28]. Case 4 was recently proposed by Galewsky et al. for testing shallow water
models [9]. This case presents a more challenging test than those in the Williamson
et al. test suite because if the resolution is not sufficiently high then the numerics
will not be able to sustain the steady zonal jet with steep vorticity gradient. If the
method cannot sustain the jet then the accuracy declines rapidly. Cases 1 through
4 represent solutions which are free of shocks or steep gradients. Cases 5, 6, and 7
are good for testing the ability of a numerical method to handle discontinuities.

5.1. Description of the Test Cases
5.1.1. Case 1: Passive Advection of a Cosine Wave

Case 1 concerns the solid body rotation of a cosine wave. The velocity field
remains unchanged throughout the computation. Williamson et al. [28] recommend
that the error be computed after 12 days of integration which corresponds to one
complete revolution of the cosine wave.

5.1.2. Case 2: Steady-State Nonlinear Zonal Geostrophic Flow

This case is a steady-state solution to the nonlinear shallow water equations. The
equations are geostrophically balanced and remain so for the duration of the inte-
gration where the velocity field remains constant throughout the computation. The
geopotential height ¢ undergoes a solid body rotation but since the initial height
field is given as a constant band in the zonal direction and the flow field is purely
zonal, then the solution remains unchanged throughout the time-integration. The
velocity field is the same as that used in case 1. Williamson et al. [28] recommend
that the error be computed after 5 days.

5.1.3. Case 3: Steady-State Nonlinear Zonal Geostrophic Flow with Compact
Support
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This case is another steady-state solution to the nonlinear shallow water equa-
tions where the equations remain geostrophically balanced for the duration of the
integration. The initial velocity field is zero everywhere except in a very small
isolated region. This isolated region, or jet, encapsulates the flow and confines the
geopotential height field to remain within a localized circular region. The results
are reported for a 5-day integration as suggested in [28].

5.1.4. Case 4: Galewsky et al. Zonal Dynamics

This test case consists of a zonal jet and an unperturbed balanced initial geopo-
tential height field. The balanced initial field should be maintained indefinitely but
Galewsky et al. [9] suggest running the case for 5 days. This is a rather stringent
test of shallow water models because if the accuracy and/or the resolution is not
sufficiently high then the model will not be able to sustain the balanced initial field
and the error will increase quite rapidly, unlike cases 1, 2, and 3 which are much
more forgiving. In addition, because the jet is zonally positioned, then any grid that
is not aligned with the zonal direction will have much more difficulty maintaining
the jet.

5.1.5. Case 5: Passive Advection of a Cylinder

This test case is similar to case 1 except that the cosine wave is replaced by a
cylinder which is essentially the 2D analog of the 1D square pulse problem. This
case is run for 12 days at which point the waves travel across the entire sphere.

5.1.6. Case 6: Cylindrical Shock Wave on a Stationary Sphere

This test case is a Riemann problem for the full nonlinear shallow water equations.
A cylinder of fluid (h = 100m) with radius R = § is placed at (A,0) = (180,0),
where A is longitude and @ is latitude, with zero velocity field and no Coriolis
(f = 0). The shock wave collapses onto itself and begins to propagate through the
sphere. This case is run for 5.4 days at which point the waves travel to the other
side of the sphere where they collide culminating in a strong discontinuity centered
at (A,0) = (0,0). Slight variations of this test have been used recently for shallow
water flows by Ata and Soulaimani [1] on the plane, and Rossmanith et al. [23] on
the sphere.

5.1.7. Case 7: Cylindrical Shock Wave on a Rotating Sphere

This case is similar to case 6 except that we now introduce Coriolis. The rotation
of the sphere vastly changes the time-evolution of the shocks. Unfortunately, this
case does not have a known analytic solution.

5.2. Discussion of the Results

For all of the test cases we compare four versions of the high-order triangle-based
DG method: the strong conservation form with O(2N) integration, the weak conser-
vation form with O(2N) integration, the strong advection form with O(2N) integra-
tion, and the strong conservation form with O(2N — 1) integration. The difference
between the O(2N) and O(2N — 1) forms is that in the former Gauss integration
points are used to evaluate the flux integrals whereas in the latter Legendre-Gauss-
Lobatto (LGL) integration points are used. Thus since the interpolation points of
the triangle along an edge are in fact LGL points this means that the interpolation
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and integration points are co-located. This allows for a very efficient evaluation of
flux integrals. However, one of the questions we would like to answer is how large a
loss in accuracy will be incurred by using this performance enhancing strategy. In
addition, we compare the DG methods with the recently developed nodal triangle-
based spectral element (SE) method with O(2N) integration given in Giraldo and
Warburton [16]. We begin with three test cases with relatively simple flow.

10 : :
— Strong Cons. 2N
- -- Weak Cons. 2N
 Strong Adv. 2N
== Strong Cons. 2N-1
5 —&— Spectral Element
H107H
o
-
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N
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4 6 8 10 12 14

Polynomial Order (N)

FIG. 4. Case 1. The normalized ¢ Lo error as a function of polynomial order, N, after 12
days using 80 (n; = 2) elements for the strong conservation form with O(2N) integration (solid
line), weak conservation form with O(2N) integration (dashed line), strong advection form with
O(2N) integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-
dotted line), and the spectral element method (solid line with square).

Figure 4 shows the results of case 1 as a function of polynomial order, N, for
the icosahedral grid refinement level ny = 2. The results for this test show that
there is almost no difference between the four DG methods. Furthermore, the DG
methods compare quite well with the SE method; the SE method gives slightly
more accurate solutions near N = 6 but otherwise all the methods yield similar
results.

Figure 5 shows the results of case 2 as a function of polynomial order, N, for the
icosahedral grid refinement level ny = 2. For this test the strong conservation forms
perform better than the weak and advection forms and the SE method. Note that
the strong conservation form does quite well even when order O(2N — 1) integration
is used. The weak form clearly yields the worst solution. In fact, the weak form is
the only one that does not exhibit exponential convergence.

Figure 6 shows the results of case 3 as a function of polynomial order, NV, for the
icosahedral grid refinement level ny = 2. For this test all the DG methods yield the
same exponentially converging solution. In addition, all DG methods yield better
solutions than the SE method for N > 6.

So far relatively insignificant differences have appeared between all four DG meth-
ods and the SE method. Cases 1, 2, and 3 are relatively smooth and thus do not
pose much of a challenge for most numerical methods. The next three test cases
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FIG. 5. Case 2. The normalized ¢ L3 error as a function of polynomial order, N, after 5 days
using 80 (ny = 2) elements for the strong conservation form with O(2N) integration (solid line),
weak conservation form with O(2N) integration (dashed line), strong advection form with O(2N)
integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-dotted
line), and the spectral element method (solid line with square).
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FIG. 6. Case 3. The normalized ¢ L2 error as a function of polynomial order, N, after 5 days
using 80 (ny = 2) elements for the strong conservation form with O(2N) integration (solid line),
weak conservation form with O(2N) integration (dashed line), strong advection form with O(2N)
integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-dotted
line), and the spectral element method (solid line with square).

are a bit more challenging and greater differences between the four DG methods
should emerge.

Figure 7 shows the results of case 4 as a function of grid refinement level, ny, for
order N = 8 elements. For this test we can see that the conservation forms perform
better than the weak and advection forms, and the SE method. It takes the weak
form up to ny = 8 to catch up to the strong form with O(2N — 1) integration.
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FIG. 7. Case4. The normalized ¢ Ly error as a function of grid refinement, ny, after 5 days
using N = 8 order elements for the strong conservation form with O(2N) integration (solid line),
weak conservation form with O(2N) integration (dashed line), strong advection form with O(2N)
integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-dotted
line), and the spectral element method (solid line with square).
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FIG. 8. Case5. The normalized ¢ L2 error as a function of grid refinement, ny, after 12 days
using N = 1 order elements for the strong conservation form with O(2N) integration (solid line),
weak conservation form with O(2N) integration (dashed line), strong advection form with O(2N)
integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-dotted
line), and the spectral element method (solid line with square).

Figure 8 shows the results of case 5 as a function of grid refinement level, ny, for
order N = 1 elements. We have chosen the lowest polynomial order because since we
are not using TVD schemes in the current scheme then higher order polynomials will
contribute virtually nothing to the accuracy. For this test we can see that all four
DG methods yield virtually similar results except for the DG with order O(2N —1)
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integration. This test cases contains a scale contraction and for such problems
it is very important to compute the flux integrals as accurately as possible. The
similarities between the strong conservation and advection forms are not surprising
because for a scalar conservation law these two forms are identical. All four DG
methods perform better than the SE method; however, the SE method catches up
to the DG with O(2N — 1) integration at nr = 9.

However, showing error norms does not tell the entire story. To show the dif-
ference in the solutions between the DG and SE methods we plot the geopotential
height profile along the Equator in Fig. 9 for the resolution ny = 64 N = 1. The
DG strong conservation form with O(2N) integration (Fig. 9a) yields a relatively
smooth solution with only minimal, and more importantly, localized undershoots
and overshoots; in contrast, the SE solution (Fig. 9b) experiences spurious oscilla-
tions throughout the entire domain (global influence). This difference in behavior
is due to the highly localized differencing stencil of the DG method which is a direct
consequence of allowing the solution across element interfaces to be discontinuous.
On the other hand, the SE method requires C° continuity across element inter-
faces which then allows Gibbs phenomena to pollute the entire domain during long
time-integrations.

100t 1 100
— 50f 1 — 50
0 ‘ 0
0 ) 180 270 360 0 ) 180 270 360
a) b)
FIG. 9. Case 5. Profile of the geopotential height, ¢, along the Equator after 12 days

for ny = 64 and N = 1 for the a) DG strong conservation form with O(2N) integration and b)
spectral element method.

The next few figures show results for case 6 (shock on a stationary sphere) at
various times in the integration for the grid resolution ny = 64 and N = 1. This case
showcases the reasons for considering DG methods over standard finite/spectral
element methods. In Figs. 10, 11, and 12 we show the results as profiles of the
geopotential height along the Equator as a function of longitude.

Figure 10 shows the results after a half day. The cylinder initially centered at A =
180 collapses onto itself forming a spike. All four DG methods yield almost identical
solutions; however, there are subtle differences. The strong and weak conservation
forms with O(2N) integration (Figs. 10a and 10b) yield identical results. However,
the strong advection form with O(2N) integration and the strong conservation form
with O(2N — 1) integration differ from the other two. The main differences are in
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FIG. 10. Case 6. Profile of the geopotential height, ¢, along the Equator after 0.5 days

for n; = 64 and N = 1 for the a) strong conservation form with O(2N) integration, b) weak
conservation form with O(2N) integration, c) strong advection form with O(2N) integration, d)
strong conservation form with O(2N — 1) integration, and e) spectral element.

the slight oscillations present at the base of the spike (Fig. 10c) and at the base of
the shocks (Fig. 10d). The behavior of the advection form upstream of the shocks
(Fig. 10c) is very surprising. Note that there are very minimal undershoots in this
region as compared to the rest of the methods. The spectral element (Fig. 10e)
even with a strong filter cannot handle the shocks very well; the undershoots and
overshoots severely pollute the solution. This is a good example of the spurious
oscillations (Gibbs phenomena) typically exhibited by non-monotone schemes in
the presence of strong discontinuities.
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FIG. 11. Case 6. Profile of the geopotential height, ¢, along the Equator after 1 day
for ny = 64 and N = 1 for the a) strong conservation form with O(2N) integration, b) weak
conservation form with O(2N) integration, ¢) strong advection form with O(2N) integration, d)
strong conservation form with O(2N — 1) integration, and e) spectral element.

Figure 11 shows the results after 1 day. The spike formed after the first half day
(Fig. 10) has now fallen below the ambient height and the two fronts of the shock
race away from each other. Once again, the strong and weak conservation forms
with O(2N) integration (Figs. 11a and 11b) yield identical results. The other
two DG methods yield slightly different results with the strong advection form
(Fig. 11c) exhibiting almost no undershoots in front of the shocks and the strong
conservation form with O(2N — 1) showing larger undershoots than the other three
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DG methods. The SE method once again has its solution severely polluted by the
spurious oscillations in the vicinity of the shocks.

30

20

90 1 f30 270 360

400

90 180 270 360

FIG. 12. Case 6. Profile of the geopotential height, ¢, along the Equator for the strong
conservation form with O(2N) integration at times: a) 2 days, b) 3 days, ¢) 4 days and d) 5.4
days.

Figure 12 shows the time evolution for the strong conservation form with O(2N)
integration. After 2 days (Fig. 12a) a secondary shock has formed near the initial
position of the cylinder (A = 180), with the two primary shocks racing away from
each other. After 3 and 4 days the primary shocks continue racing away from each
other thereby widening the base of the secondary shock. Finally, after 5.4 days the
primary shocks collide at A = 0/360 culminating in a very narrow but large spike.
The jump in the secondary shock (in the range 90 < A < 270) is small but clearly
visible.

Snapshots of the solution contours are illustrated in Fig. 13 for various times in
the integration. Figures 13a, b, and c are shown from the viewpoint (), §) = (180, 0)
and Figs. 13d, e, and f from (A,0) = (0,0). The left panel shows the geopoten-
tial height, the center panel the u, velocity (west to east), and the right panel
the v, velocity (south to north), where the subscript s is used to remind the
reader that these are the velocity components in spherical coordinates. Figure
13a shows that after 1 day the cylindrical shock wave propagates outward away
from its initial position which is evident by looking at the velocity contours where
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red is positive (left to right and down to up) and blue is negative. The geopo-
tential height (left panel) shows the well that is below the ambient height (blue
color); its profile can be seen more clearly in Fig. 11. Figures 13b and 13c show

FIG. 13. Case 6. Color contours of ¢ (left), us (center), and v, (right) for the DG strong
conservation form with O(2N) integration for the resolution n; = 64 and N = 1 at a) 1 day, b)
2 days, ¢) 3 days, d) 4 days, e) 5 days, and f) 5.4 days. Figures a, b, and ¢ are viewed from
(X, 0) = (180,0) and d, e, and f from (X, 8) = (0,0).

the expansion of the primary shock (red) and the secondary shock (blue) after 2
and 3 days. Figures 13d and 13e show the solution after it has left this hemi-
sphere and shows the contraction of the waves after 4 and 5 days from the view-
point (A,8) = (0,0). Finally, Fig. 13f shows the collision of the waves after 5.4
days which culminates in a very narrow but large spike. After 5.4 days, the large
spike collapses onto itself and the shock evolution begins anew. However, beyond
this point in the integration it is very difficult to discern whether the shock evo-
lution dynamics is correct. The reason being that too many nonlinear interac-
tions (such as colliding shocks) occur; however, the DG model has no difficul-
ties with these dynamics and animations of 12 day integrations can be found at
www.nrlmry.navy.mil/~giraldo/projects/dg tri/dg_tri_movies.html. It is very diffi-
cult to fully appreciate these shock dynamics without viewing the animations.
The snapshots of the solution for case 6 at various times are shown for three
reasons. First, the solutions show that the grid along with the DG method retains
perfect symmetry with respect to longitude and latitude throughout the integration.
Second, we have tried to mimic an animation by showing the dynamics at different
points in the integration. Third, these snapshots give a reference to which to
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compare case 7 which is similar in every respect to this case except that the sphere
rotates (Coriolis).

Snapshots of the solution contours for case 7 (shock on a rotating sphere) are
illustrated in Fig. 14 for the strong conservation form with O(2N) integration. For
this plot all of the views are from (),0) = (180,0), and the left panel shows the
geopotential height, the center panel the u, velocity, and the right panel the v, ve-
locity. Figure 14 clearly shows a different shock evolution from case 6. The addition
of Coriolis vastly changes how the shock propagates. While it is very difficult to see
from only viewing these snapshots, the initial cylindrical shock collapses onto itself
triggering radially propagating waves which, in the absence of Coriolis would evolve
as in case 6. However, the rotating sphere causes the radially outward propagating
waves to fold inward which can be clearly seen in Fig. 14a. This inward folding mo-
tion causes the shock to shear into two components (Fig. 14b) which propagate in
opposite directions. Note however that the eastward moving component (the right
wave component on the left panel) in Fig. 14b only has a velocity component in
the positive longitudinal direction (left to right) but the westward moving compo-
nent is actually propagating radially. Figures 14c-f show the continued shearing of
these waves which results in the long filamentations visible in Fig. 14f. It should be
understood, however, that the correctness of these dynamics cannot be confirmed.
We only show these results as a qualitative gage to illustrate the differences in the
shock evolution when Coriolis forces are included. Animations of this test case can
also be found at the previously mentioned link.

This type of simulation represents a very challenging test case for all numerical
methods especially those that are being proposed for very fine-scale flows. Although
the SE method we presented in [16] is exponentially convergent for smooth flows it is
not so good for flows containing shocks. This is true of almost all existing methods
except those that employ some form of Godunov-type method such as a Riemann
solver; however, the SE method can be quite easily recast into a DG formulation
such as the ones we have presented here. It should be emphasized that much better
solutions (having absolutely no undershoots and overshoots) are possible with the
DG method in combination with TVD flux-limiters which we reserve for future
work. It is anticipated that the MUSCL-TVD methods we developed in [10, 11]
for finite volume methods on unstructured triangular grids may be extended to DG
formulations.

5.3. Computational Cost

To compare the performance of the four DG methods and the SE method we
report wallclock times for case 6 for a one day integration on a Dell PC with an Intel
Xeon 1.8 Gigahertz processor. Not surprisingly all of the DG methods give very
similar performance with the strong conservation form with O(2N — 1) integration
being the fastest. Note how much more costly is the SE method even with the aid
of a state-of-the-art iterative solver (GMRES with a fast projection method, see
[16]). As the grid resolution is increased this gap in performance between the SE
and DG methods will continue to increase in favor of the DG methods.
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FIG. 14. Case 6. Color contours of ¢ (left), us (center), and vs (right) for the DG strong
conservation form with O(2N) integration for the resolution ny = 64 and N = 1 at a) 1 day,
b) 2 days, c¢) 3 days, d) 4 days, e) 5 days, and f) 5.5 days. All the figures are viewed from
(X, 6) = (180,0).

12000
— Strong Cons. 2N
- -- Weak Cons. 2N

10000f | ... Strong Adv. 2N 7
m == Strong Cons. 2N-1
e —=— Spectral Element
S 8000 1
@
@
©
E 6000- 1
'_
x
3
< 4000 ]
<
=

20001 1
0 L L L L L
0 20 100 120 140

40 60 80
Grid Refinement (n))
FIG. 15. The wallclock time required to perform a one day integration as a function of grid

refinement level, ny, using N = 1 for the strong conservation form with O(2N) integration (solid

line), weak conservation form with O(2N) integration (dashed line), strong advection form with

O(2N) integration (dotted line), strong conservation form with O(2N — 1) integration (dashed-

dotted line), and the spectral element method (solid line with square).

6. CONCLUSIONS

Triangle-based discontinuous Galerkin methods for flows on a rotating sphere
were presented. Strong and weak conservation forms as well as the strong advec-
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tion form were studied. For the test cases studied, the strong conservation form
with O(2N) integration was the most robust. In general, all of the strong forms per-
formed quite well. The weak conservation form gave similar results to the strong
conservation for all cases except for one (case 2). The strong conservation form
with O(2N — 1) integration performed extremely well for the cases with smooth
flow (cases 1, 2, 3, and 4); however, for the case with the scale contraction (case 5)
it did not do as well. Suprisingly though, for the case with the shock wave (case 6)
this form performed rather well. The DG forms with O(2N) integration performed
well for all the test cases.

For the test cases with smooth flow all of the DG forms gave similar or better
results than the SE method with two exceptions (the weak conservation form in case
2 and the strong advection form in case 4). However, for the cases with non-smooth
flows all of the DG forms gave far better results than the SE method. In addition,
all of the triangle-based DG forms are more efficient than the triangle-based SE
method. The reason being that for the triangle-based SE method a large global
mass matrix must be inverted at every time step whereas in the DG method this
mass matrix is small, local, and easy to invert.

The good results obtained with the triangle-based DG method for smooth and
non-smooth flows on a rotating sphere are very exciting and in future work we plan
to apply this method to other equation sets. In the current work we did not show
results with adaptive grid methods but from our previous paper ([16]) it is obvious
that this approach can be used immediately with the DG form. In future work, we
plan to use adaptive grids in conjunction with total variation diminishing schemes
for the study of shock waves on rotating spheres.
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